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Development of FAMD Code to Calculate the Fluid Added Mass 
and Damping of Arbitrary Structures Submerged in Confined 

Viscous Fluid 

Gyeong-Hoi  Koo*, J a e - H a n  Lee 
Korea Atomic Energy Research Institute, P.O. Box 105, Yusong, Taejon 305-600, Korea 

In this paper, the numerical finite element formulations were derived for the linearized 
Navier-Stokes' equations with assumptions of  two-dimensional incompressible, homogeneous 
viscous fluid field, and small oscillation and the FAMD (Fluid Added Mass and Damping) code 
was developed for practical applications calculating the fluid added mass and damping. In 
formulations, a fluid domain is discretized with C°-type quadratic quadrilateral elements 
containing eight nodes using a mixed interpolation method, i.e., the interpolation function for 
the velocity variable is approximated by a quadratic function based on all eight nodal points and 
the interpolation function for the pressure variable is approximated by a linear function based 
on the four nodal points at vertices. Using the developed code, the various characteristics of  the 
fluid added mass and damping are investigated for the concentric cylindrical shell and the actual 
hexagon arrays of  the liquid metal reactor cores. 
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1. Introduction 

A liquid metal fast breeder reactor (LMFBR) 
core is composed of  as many as several hundreds 
core components, including fuel assemblies, blan- 
ket assemblies, neutronic shield assemblies, and 
so on, all of  which are submerged in a liquid 
coolant environment. The subassemblies have the 
hexagon section and they are very closely spaced 
each other. The gaps between the subassemblies 
should be designed to permit removal and inser- 
tion of  ducts under reactor shutdown conditions, 
while limiting the free deflection of  ducts during 
normal operation. During a seismic event, these 
core subassemblies vibrate like cantilevers with 
load pad impacts under fluid-structure interac- 

* Corresponding Author, 
E-mail : ghkoo @ kaeri.re.kr 
TEL : +82-42-868-2950; FAX : +82-42-868-8363 
Korea Atomic Energy Research Institute, P.O. Box 105, 
Yusong, Taejon 305-600, Korea. (Manuscript Received 
October 9, 2002; Revised December 26, 2002) 

tion. In this situation, the fluid in the gaps has an 
important effect on the resulting core seismic 
responses due to the inertial and viscous coupling 
of  the fluid (1AEA, 1996; Koo and Lee, 2001). 
Recently, the seismic isolation technology (Koo 
et al., 1999) was introduced to the reactor design 
to reduce seismic responses. This makes the natu- 
ral frequency of  the reactor pull down to very 
lower regions. In this situation, the fluid added 
mass may severely affect the seismic responses. 

For simple application of  fluid added mass 
effect, the calculation formulas for various struc- 
tural sections submerged in inviscid fluids are 
provided analytically (Fritz, 1972). However, the 
situation is quite different for the case of  viscous 
fluids, where the fluid field is more complex due 
to phase change introduced by viscosity. Many 
researchers have studied the effects of  fluid vis- 
cosity on vibrating structures with the analytical 
approach in case of  simple sectional shapes 
(Chen et al., 1976 ; Su, 1983 ; Mulcahy, 1980). In 
general, the sectional shape of  LMFBR core 
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subassemblies is a hexagon and the array of these 
subassemblies is very complicate. To determine 
the fluid added mass and damping for this actual 
LMFBR core system, it is not possible deriving 
the theoretical closed form solution. The numeri- 
cal approach using the finite element method 
for circular cylinders has been studied by New- 
ton but this study has dealt with inviscid fluid 
(Newton et al., 1974). Yang and his colleague 
have included the fluid viscosity effect in finite 
element approach using triangular quadratic ele- 
ment type and calculated the fluid added mass 
and damping coefficients for immersed hexagon 
cylinders (Yang and Moran, 1980), 

In this paper, the numerical finite element for- 
mulations were derived for two-dimensional in- 
compressible and homogeneous viscous fluid field 
and the FAMD (Fluid Added Mass and Dam- 
ping) code was developed to obtain the fluid 
added mass and damping for the problems with 
arbitrary geometric sectional structures submerg- 
ed in a viscous fluid. In this code, the fluid 
domain is discretized with C°-type quadratic 
quadrilateral elements containing eight nodes; 
four nodal points at the vertices and four nodal 
points at the midpoints of the edges. The mixed 
interpolation method (Zienkiewicz and Taylor, 
1991) is introduced in the FAMD code, i.e., the 
interpolation function for the velocity variable is 
approximated by a quadratic function based on 
all eight nodal points and the interpolation func- 
tion for the pressure variable is approximated by 
a linear function based on the four nodal points at 
vertices. As the FAMD pre-processor to generate 
the analysis input data such as nodal coordinates, 
element connectives, fluid boundary conditions, 
and so on, the commercial FEM code, ANSYS 
was used. 

The developed code is very usefully applicable 
to any arbitrary sections of the immersed struc- 
tures in fields of reactor core vibration, ship and 
ocean structure vibration, earthquake engineer- 
ing, nuclear reactor components design, and so 
on. 

2. Finite Element Formulation of the 
Governing E q u a t i o n s  

To make an approximate approach for the 
Navier-Stokes' equations in fluid mechanics, the 
basic assumptions are introduced that 1) fluid 
is incompressible and homogeneous with density 
p and dynamic viscosity g, 2) the vibrating 
motions of the fluid and boundary interfacing 
with structure are simple harmonic with fre- 
quency o~ and small amplitude, and 3) all fluid 
motion is planar. With these assumptions, the 
Navier-Stokes" equation and continuity equation 
can be linearized as follows; 

av, _ ^~ ÷ a Z .  (1) 
P - E F  - ~ "  ax~ 

where 

and 

• / O t , , _ a v j \  (2) 

aui ax~ = o  (3) 

in a fluid domain V. 
In Eqs. (1)~(3) ,  v; represents the velocity 

components in the x,. direction, where the sub- 
script i has 1 and 2, f~ the body force vector, P 
the pressure, ro the stress tensor, and 8o the 
Kronecker delta. 

Let v~* be the weighting function whose value 
is zero on the boundary on which the velocity is 
prescribed and arbitrary elsewhere. The inner 
product of Eq. (1) and v?, and integral over the 
fluid domain V becomes 

fvpv ,. av, dV=fvPV .f, dV+ fffov ,njdA 
(4) 

f aVi* . . .  
- A ro -~-~/  a v ,  i =  l, 2 

where A appeared in Eq. (4) is the boundary of 
the fluid domain interfacing with the structure 
and n~ indicates unit vector in xi direction. 

Weight Eq. (3) with a weighting function p* 
whose value is arbitrary on A is 

fvp* ~ dV=O (5) 
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Substitution of  Eq. (2) into Eq. (4) gives 

f v" Ov*dV f.  Ova* ~ - v + f  Ov, °/Ovi+OVJ\dV 

= fOv,* f, dV + f],,v,° ndA 

To make a finite element approach, let the 
velocity and pressure have the following solution 
forms for each element 

N 

v,(x, t) = ~ ,  ¢'(x) v?e *~̀  (7) 

and 

M 

p(x, t) = ~. ¢t'(x)p'e"" (8) 

where ~b and Ik are the interpolation function for 
the velocity and pressure respectively, and the 
superscripts m and n indicate the local nodal 
values at nodal number m and n, respectively. N 
and M indicate the total number of  interpolation 
functions for ~b and ¢,, respectively. 

As same manner, the weighting functions vt* 
and Pt* can be expressed as 

N 

v~*(x, t ) = ~ .  ¢"(x)v,'"e"" (9) 

and 

M 

p*(x, t)=~1 lt=(x)p'=e*°* (8) 

Substitution of  Eqs. ( 7 )~ (10 )  into Eqs. (5) and 
(6) gives 

and 

fpo*Ct ~ vMV=O (I 1) 

fvo(i°~)v:~rvdV-£ v'°r ~ #rP dV 

Ox, Ox, v,+v," OCax, dv (12) 

- -  

where the superscript T i n  Eq. (I I) and Eq. (12) 
represents matrix transpose. 

For arbitrary weighting function v~* and p~*, 
Eq. (12) and Eq. ( l i )  can be rewritten to the 
following forms : 

and 

Eq. (13) is the expression of the discretized 
approximation of the linearized Navier-Stokes'  
equation and Eq. (14) represents the incompres- 
sibility condition of fluid. These equations can be 
simply expressed in the matrix form as 

-C~ - 

where 

The stiffness matrix derived in Eq. (15) is 
square, banded, symmetric, complex, and inde- 
finite. In this paper, the fluid domain is discre- 
tized with C°-type quadratic quadrilateral el- 
ements, which is enough to satisfy the conver- 
gence and compatibility requirements. Such an 
element has four nodal points at the vertices and 
four nodal points at the midpoints of  the edges. 
As expressed in above equations of  motion, the 
degree of  derivative of  velocity variable is one 
degree higher than that of  the pressure variable. 
in this situation, if we use the same order of  
interpolation functions for both velocity and 
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Fig. 1 
Xl 

Used C O 8-nodes quadratic quadrilateral ele- 
ment for mixed interpolation method 

pressure variables, the numerical oscillation can 
be occurred in solving Eq. (15). To avoid this 
phenomenon, the mixed interpolation method 
(Zienkiewicz and Taylor, 1991) is used in this 
paper. The interpolation function for the velocity 
variable is approximated by a quadratic function 
based on all eight nodal points and the interpola- 
tion function for the pressure variable is ap- 
proximated by a linear function based on the four 
nodal points at vertices as shown in Fig. 1. The 
complete set of  shape functions [~] for the ve- 
locity variable can be written with isoparametric 

coordinates ~ and r/as 

1 1 i~ i=~- (1  - -~ )  ( l  - -  7/) - - T  (l#ii-i- i~5) 

~ = / ( 1  + $ ) ( l - - r / ) - - ~ ( ~ s +  ~.) 

l i~a=~(l + $ ) ( I  +r/)---{-(i~lli+ ~,) (16) 

~ 4 = / ( 1 - - ~ )  (1 +r/)--~-(tl~t+ ~ii) 

¢,=~- ( I - -~ ' )  (1--7/I, ¢ii-----l-(l +~')( l--r/z) 

¢,=½(i-~') (l+r/), ~,=½(i-~1 (l-e) 
The complete set of  shape functions [Ik] for the 

pressure variable can be written as 

Iki=-~--(l--~) ( l --r /) ,  I k i=~- ( l+~) ( I - - r / )  
(17) 

~----1(1+~) ( l+r / ) ,  lk, t = / ( l - - ~ ) ( l + r / )  

In terms of  interpolation functions, the velocity 
and pressure variable are approximated by 

V;=[~]T{vi} . ,  i = 1  and 2 (18) 
#=  Ilk]V{ p }e (19) 

where { v, }eT={ v,', "", vl II } and { p }e '={ p', "", 
p4 } and subscript e means that the vector is base 
on element. 

The used element type has eight nodes with 
twenty degrees of  freedom. Figure ! shows the 
definition of  degree of  freedom in the quadratic 
quadrilateral element using in this paper. In the 
integral forms of  eq. (15), as no derivatives are 
present for the pressure component, only the deri- 
vatives for the velocity component are to be 
calculated as follow; 

where 

{ v4~, } = [B] { v, }o (20) 
Vt.xs 

r,,=, ,,,=, ' , , - ,7  [B]=LIb,#, ~ , - - .  Ibm#, 

In expression of  Eq. (20), comma subscribed in 
variable indicates the partial derivative with re- 
spect to following coordinate. The xx and x2 are 
the orthogonal global coordinate. 

The derivatives needed in Eq. (15) are not 
immediately available because v,. is expressed in 
terms of  ~ and 7/, not x~ and xz. Therefore it is 
necessary to derive the some relation between the 
global coordinates and the isoparametric coor- 
dinates by sequent operation as follows: 

{ v<~, l = [ c ] i  v<. i=[C]  [D] { v, }.= [B]{ v,}. (21) 
VAIl J t [ l ~  J 

In above Eq. (21), [D] matrix can be expressed 

a s  

= r e ' . °  " '" [D] L@,,~ ~z,~ "'" @s,,~-I (22) 

and the [F'] matrix can be obtained by the chain 

rule, 

avi avi a__~L_, Ov~ 071 
- ~ l  = - - ~  -- 3Xi -I- ar/ o3ni and 

(23) 
Ov~ Ov~ O8 4_av~ arl 
-~ ,= - -~ - -T£ -  ar/ ax, 

Therefore, Gl=~.x,  ~l=r/ .x ,  F z l = ~ ,  F~,= r/.y. 
In Eq. (23), the partial derivatives of  ~ and r/ 
with respect to x~ and xz are not directly avail- 
able. However. the [ [ ' ]  matrix can be obtained 
using the expression of  Eq. (21) inversely as 
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o r  

Ov~ av~ a x ,  , Ov~ Ox2 

Ov, Ovi Oxt , Ov~ Ox2 
a,1 = - ~ - ( - ~ - r  ax~ a'l 

- -  and 

Ui,~ Ui, x l  

where [J] is called the Jacobian matrix : 

rz } ] rx,~ X~o] (v,) ,~x~ (v,)~x¢ 
N 

Lxf xI] 
(25) 

Therefore, matrix [/"] can be obtained by the 
inverse of  [J], 

--  ] n  J (26) 

where J is the determinant of  the Jacobian matrix. 
With Eqs. (16) ~ (26) and by use of Gauss qua- 

drature formulas over the nine integral points 

with order 3, each term in Eq. (15) can be in- 
tegrated exactly. Thus, the element stiffness matrix 
of  Eq. (15) can be obtained and assembled with 
standard finite element techniques. 

3. Determination of Fluid Added Mass  
and Damping 

The fluid added mass and damping of  solid 
bodies submerged in fluid shown in Fig. 2 can be 
determined for the unit amplitude oscillation of  
one body in each of  two orthogonal directions 
and no oscillations of  the remaining fluid boun- 
daries contacting with other bodies. Each body 
has hydrodynamic reactions caused by oscillation 
of  itself, other bodies, and the outer container. 
Therefore, the results of  the calculated fluid added 
mass and damping of  solid bodies produce the 
consistent matrix with complex coupling terms. 

In the unit amplitude oscillation of  body, the 
body force is neglected and the shear stress is 

Xl 

0 ule • oonlB iner 
Flukl bound l t y ,  d ~.Z P reuVreveo~r 

x, 

Fig. 2 Two-dimensional fluie field with cross sec- 
tions of immersed N solid bodies 

nowhere prescribed along the fluid boundaries, 
therefore, FI and F2 in Eq. (15) are zero. To 
obtain the fluid added mass and damping of  
solid bodies, the velocity of  the fluid boundary 
oscillating by solid must be prescribed with unit 
amplitude. In this case, the boundary conditions 

become 

vi = Uie ~'t on fluid boundary at moving body 

and 

vi=O on all remaining fluid boundaries (27) 

To solve the unknown velocity and pressure 
vectors in system matrix having prescribed veloc- 
ity boundary conditions, the system matrix can be 
partitioned known and unknown vectors as 

0 

where wl is a set of  prescribed velocity vectors 
and w~ is a set of  unknown velocity and pressure 
v e c t o r s .  

Finally, the unknown vectors can be obtained 
by solving the following reduced system equation, 

[ I ~ ] {  w2 } = - -  [Ka~]{ wl }={ C}  (29) 

The hydrodynamic reaction force acting on the 
fluid boundaries is calculated using Eq. (2) as 
follow ; 

R~= Lron~dA 
(30) 

= L {  - p d o +  #( av,/ Oxj+ Ovff Ox,) } nsdA 
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where the integration carried out over the fluid 
boundary at each body. 

The hydrodynamic reaction force is a complex 
value and can be expressed in the following form, 

R,=Q, cos tot + iP, sin tot (31) 

In Eq. (31), P i s i n  tot component is in phase 
with the acceleration and Q~ cos tot component 
is in phase with the velocity. From these com- 
ponents, the fluid added mass, Ms and damping, 

Cf can be determined as 

M - P  Q 
Cf=--~ (32), (33) f - - - ~ ,  

For a system with Nsol id  bodies submerged in 
confined fluid, 2 ( N + I )  solutions of  Eq. (29) 
will be carried out and 4 ( N +  1) 2 integrals of  Eq. 
(30) are required to obtain the consistent fluid 
added mass and damping matrix for all solid 
bodies and outer container. 

For the dimensionless investigation of  the fluid 
effects, the fluid added mass coefficient, C= and 
the fluid damping coefficient, Cv are defined as 

C . =  P Q pAtoU'  Cv= pAtoU (34), (35) 

4. Examples  of  Application 

4.1 Concentric cylindrical shell 
As an example of  application, the evaluation 

of  the fluid added mass and damping for the con- 
centric cylindrical shell was carried out. The used 
fluid properties of  the fluid dynamic viscosity and 
fluid density are /z=9.54X 10-4N-s/m z and p =  
1000 kg/m 3 respectively. The diameter of  the in- 
ner cylinder is d = 1 5  cm and the diameter ratio 
of  the inner cylinder and outer cylinder is D / d =  

3/FY. 
Figure 3 shows the two-dimensional finite ele- 

ment model of  the fluid field for the concentric 
cylindrical shell. To generate the nodal coordina- 
tes, element connectivity, fluid boundary condi- 
tions, and so on, the commercial finite element 
code, ANSYS 5.6 was used. 

Figure 4 presents the calculated fluid added 
mass and damping of  the inner cylinder with 
respect to the Reynolds number Re=p(wdZ/p).  

T 
D 

1 
Fig. 3 Finite element model of concentric cylin- 

drical shell 

10 

t, 
0.1 

10 

Fig. 4 

10o 1000 10000 

neyno lm  number 

Calculated fluid added mass and damping for 
concentric cylindrical shell 

As shown in figure, the fluid added mass is larger 
than the inviscid fluid case due to the fluid 
viscosity effect. However, as the Reynolds number 
increases, the fluid added mass coefficient, C= 
approaches the value of  the inviscid fluid case, 
which is independent of  the excitation frequency, 
and the fluid damping coefficient, Cv approaches 
zero. 

To verify the FAMD code, the results are com- 
pared with those of  the theoretical solutions by 
Fritz for the inviscid fluid case. The fluid added 
mass matrix for the unit length of  concentric 
cylindrical shell can be obtained using the simple 
formula as 

F x , / =  aM, - ( I - t -a)M~ ]~ax, l (36) 
F ~ J  L- ( l - l - a )Ml  (l-t-a)Ml+M2Jta~J 
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Table 1 Fluid added mass matrix of concentric cylindrical shell for inviscid fluid case 

463 

IO0 

400 
I-X 

900 

100 

4O0 
I-Y 

900 

100 

400 
2-X 

900 

100 

4OO 
2-Y 

900 

l -X l -Y 2-X 2-Y 

100 400 900 100 400 900 100 400 900 100 400 

34.3 -51.7 

35. ! - 52.7 

35.2 -52.9 
(35.4) -53.0) 

34.3 -51.7 

35.1 -52.7 

35.2 

(35.4) 

-51.7 103.8 

--52.7 105.5 

-52.9 105.8 
(--53.0) (106.0) 

-51.7 103.8 

-52.7 105.5 

-52.9 
(-53.0) 

Note, ( ) : Theoretical solutions, 100, 400, 900 ; # of elements, X, Y : global directions 

900 

-52.9 
(-53.0) 

105.8 
(106.0) 

where a=(R22+Rz2)/(RzZ--RI2) ,  Mt~-toR-RI 2, 
and M2= pa'R22 

Table 1 shows the comparison results. The 

value corresponding to ( l -x,  2-x) indicates the / fluid force on solid body 1 in the x direction due 

to the motion of solid body 2 in the x direction. 

The overall results of the FAMD code are in D 

good agreement with those of theoretical solu- | 

1 
tions and as the element number increases, the 

numerical values exactly approach the theoretical 

solutions. 

4.2 Hexagon core of liquid metal reactor 
The core of the liquid metal reactor consists of 

several hundreds hexagon cylinders very closely 

spaced each other. In this paper, the numerical 

approach by FAMD code was carried out to 

investigate characteristics of the fluid added mass 

and damping for couples of array cases. 

4.2.1 Single hexagon system 
Figure 5 shows the finite element model of the 

fluid field for the single-hexagon with outer cir- 

cular container. The flat to flat diameter of the 

Fig. 5 

x2 T 

XI 

Finite element model of single hexagon sys- 
tem 

hexagon is d----15cm and the diameter ratio of 

the hexagon and outer container is D / d = 3 / f 3 -  

as same as that of previous example for the con- 

centric cylinder. 

Figure 6 gives the calculated results of the fluid 

added mass and damping coefficients with respect 

to the Reynolds number. The overall charac- 

teristics are same as those of the concentric cylin- 

der but the coefficients are larger. This fact means 
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numlx.r 

Fig. 6 Calculated fluid added mass and damping for 
single hexagon system 

4 . 0  

[ ..a- c,.: o,~k~ ,tin 

1 . 5  . . . . . . .  , . . . . . . . .  

Fig. 7 Comparison of fluid added mass between 
concentric cylindrical shell and hexagon 

that the hexagon section carries the fluid resist- 

ance more severely than the circular section. The 

fluid mass coefficient is larger about 22% as 

shown in Fig. 7. 

4.2.2 Seven-hexagon system 
Figure 8 depicts the finite element model of the 

fluid field for the seven-bexagon system arrayed 

within an 18-sided regular polygonal boundary 

and outer circular container. Table 2 and Table 3 

reveal the calculated results of the fluid added 

mass coefficients C,, and the fluid damping co- 

efficient Cv respectively in direction of x~ for the 

case of the fluid gap ratio, g / r ( = d / 2 )  = 0.06 and 

the Reynolds number, Re=500. In this result, the 

center hexagon has the maximum values due to 

the surrounding thin fluid gap. Figure 9 shows 

the relationship between the fluid added mass 

Table 2 Fluid added mass coefficient, C~ of 7- 
hexagon for viscous Fluid Case 

I-X 2-X 3-X 4-X 5-X 6-X 

I-X 14.6 

2-X -3 .6  8.6 

3-X 3.1 -1 .6  5.7 

4-X -3 .6  -2 .0  -1 .6  8.6 

5-X -3 .6  -0 .8  0.3 3.6 8.6 

6-X 3.1 0.2 0.8 0.2 -1 .6  5.7 

7-X -3 .6  3.6 0.3 -0 .8  -2 .0  -0 .5  

TaMe 2 

7-X 

8.6 

Fluid damping coefficient, Cv of 7- 
hexagon for viscous fluid case 

I-X 2-X 3-X 4-X 5-X 6-X 

I-X 300. 

2-X -95.0 151. 

3-X 40.6 -41.4 49.8 

4 - X - 9 5 . 0 - 4 4 . ~ - 3 8 . ~  151. 

5-X -95 .0-23 .1  -5 .7  59.1 151. 

6-X 40.6 -5 .9  2.1 - 5 . 9 - 4 1 . 4  49.8 

7-X -95.0 59.1 - 5 . 7 - 2 3 . 1 - 4 4 . ~ - 3 8 . 9  

7-X 

151. 

Fig. 8 Finite element model of 7-hexagons system 

coefficient, C ,  ( l-x, l-x) and the fluid gap for the 

center hexagon (number 1) in case of Re=500. 

As shown in figure, the viscous solution gives 

larger value than those of the potential solution. 

The discrepancy increases as the fluid gap de- 

creases. This means that the fluid viscosity effect 

on the fluid added mass becomes to be significant 
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2~ 

Fig. 9 

35O 

: ( l : : : X l g a l ,  C4m (IX. 1)0 

o:, 
~ o  naio, o / f(,,c~) 

Fluid added mass coefficient vs. fluid gap 
ratio for 7-hexagon system 

3OO 

180 

-60 

Fig. 10 

~ lmt t t  ld ~ r a  ~ 

Gw ra~o. O / r(-d/2) 

Fluid damping coefficients vs. fluid gap ra- 
tio for 7-hexagon system 

when the fluid gap is small. When the fluid gap 

decreases, C ,  increases exponentially and as the 

fluid gap increases, C .  approaches constant value 

having no fluid gap effect. Figure 10 shows the 

relationship between the fluid damping coeffi- 

cients and the fluid gap for the center hexagon in 

two cases of  Re----500 and Re=3000.  As the fluid 

gap ratio, g / r  increases, Cv approaches zero. At  

small gap regions, we can see that the effect of  the 

Reynolds number becomes very sensitive on the 

fluid damping coefficient. 

4.2.3 Mar l -hexagon  and single row hexagon 

system 

Actually, it is very difficult to obtain the whole 
matrix of  the fluid added mass and damping for 

several hundreds duct assemblies due to the finite 

x2 t 

(a) Group 19-hexa- (b) Single row 5-hexa- 
gons model gong model 

Fig. 11 Finite element models used in analyses 

25" 

20 

1$ 

10 

sis. 12 

- e -  ¢ ~ t e  e, 3 7 - m ~ a ~ m  
G m ~  e, l ~ t t u a ~ n .  

--4.-  ¢ ~ t ~  e, 7-ttma0m* 

Hexago4n Array Number 

Comparison of fluid added mass coefficients 
of central hexagons for various models in 
direction of x2 

element modeling size and computing time. In 

this paper, the effects of  the number of  hexagons 

are investigated for the inviscid case. 

Figure I i depicts the finite element models for 

group of  19-hexagon system and simple single 

row hexagon system for a central array. Figure 12 

shows the calculated results of  the fluid added 

mass coefficient for the single row hexagon array 

as shown in Fig. ! !. From the results, it is known 

that the fluid added mass of  a single row model is 

much smaller than those of  the group models. 

Therefore, it should be careful in seismic tests 

with the conventional single row model, which 

may result in significant discrepancy compared 

with full core system. With increase the number of  
hexagons over 19, outermost hexagons do not 

affect the fluid added mass of  the inner hexagons 

and the fluid added mass coefficient converged to 
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constant value at most inside hexagons. This fact 
indicates that the fluid added mass of  the LMR 
core should be estimated using the group of  37- 
hexagon system at least. 

5. Conclusions 

In this paper, the finite element formulations 
for calculating the fluid added mass and damping 
for arbitrary sectional structure submerged in a 
viscous fluid are derived and the computer pro- 
gram FAMD code is developed for the practical 
applications. From the results of  concentric cylin- 
drical shell, it is verified that the FAMD code 
gives good agreements compared with those of  
theoretical solutions. The results for actual system 
of the liquid metal reactor core indicate that 
viscous effects become to be significant and the 
fluid damping is very sensitive to the Reynolds 
number for small fluid gap conditions. From the 
comparison results between the group hexagon 
model and the single row model of  the reactor 
core, the group model gives much larger fluid 

added mass than the single row model. 
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